Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Tetrahedron Lett ; 104: 154012, 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-1984119

ABSTRACT

The COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuing to spread around the world. GS-441524 is the parent nucleoside of remdesivir which is the first drug approved for the treatment of COVID-19, and demonstrates strong activity against SARS-Cov-2 in vitro and in vivo. Herein, we reported the synthesis of a series of deuterated GS-441524 analogs, which had deuterium atoms up to five at the ribose and the nucleobase moieties. Compared to GS-441524, all the deuterated compounds showed similar inhibitory activities against SARS-CoV-2 in vitro.

2.
Bioorg Med Chem ; 46: 116364, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1406212

ABSTRACT

The nucleoside metabolite of remdesivir, GS-441524 displays potent anti-SARS-CoV-2 efficacy, and is being evaluated in clinical as an oral antiviral therapeutic for COVID-19. However, this nucleoside has a poor oral bioavailability in non-human primates, which may affect its therapeutic efficacy. Herein, we reported a variety of GS-441524 analogs with modifications on the base or the sugar moiety, as well as some prodrug forms, including five isobutyryl esters, two l-valine esters, and one carbamate. Among the new nucleosides, only the 7-fluoro analog 3c had moderate anti-SARS-CoV-2 activity, and its phosphoramidate prodrug 7 exhibited reduced activity in Vero E6 cells. As for the prodrugs, the 3'-isobutyryl ester 5a, the 5'-isobutyryl ester 5c, and the tri-isobutyryl ester 5g hydrobromide showed excellent oral bioavailabilities (F = 71.6%, 86.6% and 98.7%, respectively) in mice, which provided good insight into the pharmacokinetic optimization of GS-441524.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Adenosine/pharmacokinetics , Adenosine/pharmacology , Adenosine/toxicity , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Chlorocebus aethiops , Male , Mice, Inbred ICR , Microbial Sensitivity Tests , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/toxicity , Vero Cells
3.
J Org Chem ; 86(7): 5065-5072, 2021 04 02.
Article in English | MEDLINE | ID: covidwho-1139704

ABSTRACT

Currently, remdesivir is the first and only FDA-approved antiviral drug for COVID-19 treatment. Adequate supplies of remdesivir are highly warranted to cope with this global public health crisis. Herein, we report a Weinreb amide approach for preparing the key intermediate of remdesivir in the glycosylation step where overaddition side reactions are eliminated. Starting from 2,3,5-tri-O-benzyl-d-ribonolactone, the preferred route consisting of three sequential steps (Weinreb amidation, O-TMS protection, and Grignard addition) enables a high-yield (65%) synthesis of this intermediate at a kilogram scale. In particular, the undesirable PhMgCl used in previous methods was successfully replaced by MeMgBr. This approach proved to be suitable for the scalable production of the key remdesivir intermediate.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amides/chemistry , Antiviral Agents/chemical synthesis , Adenosine Monophosphate/chemical synthesis , Alanine/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL